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1994 Report on ONR Grant No. N00014-92-J-1271.
LEVY WALKS AND TURBULENT FLOWS.
Fernand Hayot

Department of Physics

The Ohio State University

I. Area of Research and Focus

The present grant started in January of 1992, and was renewed in January
of 1993. It provides support for one graduate student, Luke Wagner.

The focus of the work is turbulence, and its modelling by Lévy walks in
lattice gas hydrodynamics. After studying turbulent channel flow!, we have
concentrated over the last two years on flow around an infinite cylinder. The
flow situations we are concerned with are those where some level of turbulence
in the incident flow affects measurements of pressure and drag on the cylinder
as compared to the laminar case. We are also greatly interested in how such
turbulence interferes with the coherence and behavior of the vortex street
which develops behind the cylinder at sufficiently large Reynolds numbers.

Lévy walks fit naturally into the framework of lattice gas hydrodynamics®.

They are relevant to phenomena where turbulent behavior results from the




exchange of momentum over a vast range of distances, and they provide
an appealing physical picture for their description. In turbulent channel flow
they are akin to Prandtl’s mixing length hypothesis. In turbulent low around
a cylinder they provide a mechanism for the transfer of fluid into and out of
the wake into the surrounding fluid, which is believed to be responsible for
observed changes in behavior of pressure and drag?, before one reaches the
drag crisis region.

II. WORK DONE UNDER THE GRANT( January 1993- Decem-
ber 1994)

Though our initial work was done with the Boolean version of lattice gas
hydrodynamics, our recent work is done with the Boltzmann version, relying
on the BGK ( Bhatnagar, Gross, Krook) model. The reason for the change
is our interest in quantitative results for pressure and drag, and fluctuations
of the vortex street. The statistical fluctuations which occur in the coarse-
graining procedure in the Boolean case make it impossible to obtain precise
measurements of the pressure around the cylinder. The other advantage of
the Boltzmann version is that one does not need consider the very large
sytems one must in the Boolean case, even for Reynolds numbers as low as
100. The disadvantage of the Boltzmann approach is that one now deals with
real numbers, no longer merely integers in the main part of the algorithm,
and therefore the speed of execution brought about by the use of multispin

coding is lost. Our codes had therefore to be rewritten in order to implement



this different algorithmic approach.

I wish to discuss three main results, which are reported in the following
three references, included with this report:

- Pressure in lattice Boltzmann simulations of flow around a cylinder, by
Lukas Wagner, to appear in Physics of Fluids.

- Lattice Boltzmann simulations of laminar and turbulent flow past a
cylindrical obstacle, by Lukas Wagner and F. Hayot, to appear in the Journal
of Statistical Physics.

- Lévy walks and lattice gas hydrodynamics, by F. Hayot and Lukas Wag-
ner, to appear in a Springer Verlag book on Lévy walks.

The three results concern pressure around the cylinder, drag and the
coherence of the Von Karman vortex street.

4.1. Pressure around the cylinder.

Some care has to be taken to measure pressure since on the lattice the
cylinder is actually a polygon. Our results concern reduced pressure as a
function of the angle § around the cylinder measured from the stagnation
point. We find that over part of the forward region the turbulent pressure
is higher than the laminar one, but around the back region the opposite
is true, the greatest difference occuring close to , but above § = 7/2. We
also find ( as expected) that the difference between laminar and turbulent
pressure diminishes as the ”integral scale” parameter lnq../D diminishes.

These results are in qualitative agreement with those of Bearman® for flat




plates, who observed that turbulence diminishes the base pressure (behind
the plate), and also that, as the size of the plate increases ( for a given
integral scale) the difference between turbulent and laminar base pressure
diminishes.

4.2. Drag.

Drag on the cylinder is affected by transport of momentum into and out
of the wake, which is a result of the Lévy exchanges. These exchanges lead
to a clear decrease in the size of the region of negative streamwise velocity
component right behind the cylinder. From a particle point of view, this
means that there are fewer particles which impinge onto the cylinder hitting
it from the back against the principal thrust of the flow. As a result, the
drag is expected to increase as l,,../ D increases sufficiently. This is what our
results show for the drag coefficient Cp as a function of lmaz/D. As sooon as
Imaz/ D exceeds a value of 2, the drag starts increasing. It saturates when the
size of the exchanges becomes large enough to be insensitive to the dimension
of the vortex street itself. According to a wake entrainment argument?,
turbulent drag should increase as (lmss/D)? relative to the laminar case,
until it saturates. Our result on turbulent drag is in qualitative agreement
with this.

4.3. Coherence of Von Karman street.

It is natural to ask to what extent entrainment into and out of the wake,

caused by the presence of turbulence in the incident flow, affects the coher-
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ence of the Von Karman street. As a measure of that coherence, we choose
the component v of velocity perpendicular to the streamwise direction, on
the axis of the cylinder. In the laminar case, this is a strong component,
which at the Reynolds number we are considering varies periodically in time
with a well defined frequency, which determines the value of the Strouhal
number. Qur results show two things: one that vpeqr,the maximum value of
v, decreases rapidly as the parameter !,/ D increases, and becomes very
small at l,,,,/D = 3, the value where also the drag starts deviati.ng signifi-
cantly from the laminar value. Secondly, that though the intensity diminishes
considerably, the frequency spectrum of v continues to be dominated by the
Strouhal frequency component. There thus may be no significant broadening
of the Strouhal peak in the spectrum as the range of exchanges increases. We
have noticed however that a contour plot of pressure, which in the laminar
case shows clearly the presence of vortices, changes completely as l,,q./ D be-
comes large enough, without any trace left of vortex structure. Correlations
between transverse velocity components on and off the axis show the same
phenomenon. Speaking loosely, one might say that as the range of exchanges
increases the Von Karman street gradually loses its spatial coherence, but in
such a way that the rate of production of vortices ( the Strouhal number)
remains well defined, at least up to l,../D = 2. For clearly higher values
the vortices cease to exist.

There is a caveat here: these results depend sensitively on the precise




relationship between number of exchanges and distance of exchange in the
Lévy walks, whereas those on pressure for instance do not. It is therefore
worth repeating here that as far as the coherence of the Von Karman street is
concerned, our model studies only indicate what could happen and what are
the parameters to measure. On the other hand this is the first experimen-
tally relevant phenomenon we find which is sensitive to the above mentioned
relationship.

III. Work in progress.

Since the beginning of our work there has been the problem of how to for-
malize the empirical implementation of the Lévy walk in lattice gas hydrody-
namics. The investigator asserted in his first paper that the implementation
was the equivalent in lattice gas hydrodynamics of a closure approximation.
However this statement could not be shown explicitly, though we investigated
the issue repeatedly with the collaboration of Stephane Zaleski in Paris.

We now believe we have made some major progress in this problem in
the context of the BGK model. A modification of this model in a direction
based on Lévy walk ideas leads - for turbulent channel flow - to results
similar to the ones derived from the empirical Lévy walk implementation .
What is interesting is that the numerical solution of the kinetic equation is
computationally less efficient than the straightforward implementation. Qur
"empirical” algorithm thus appears to be an efficient way of implementing

a modified kinetic equation which in the hydrodynamic limit leads - as we




are able to show - to the well-known closure approximation ( zero equation
model) of the Navier-Stokes equation!

IV. Conferences

F. Hayot attended the International Workshop on ”Lévy flights and re-
lated phenomena in physics” (Nice, 1994), where he gave an invited talk on
Lévy walks and lattice gas hydrodynamics.

Lukas Wagner attended the 5th International Conference on ” Discrete
models in fluid mechanics” (Princeton, 1994), and gave an invited talk on
pressure and drag measurements in laminar and turbulent flows around a
cylinder.

Lukas Wagner is attending the 1994 APS meeting on Fluid Mechanics
(Atlanta,1994) where he will present our results for turbulent flows impinging

on a cylinder.
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The expression for the pressure in lattice Boltzmann realizations of the Navier-Stokes equations involves
compressibility effects. The pressure in 2-dimensional steady and unsteady cylinder flow is obtained numer-
ically in a lattice Boltzmann scheme for the first time and compared with experimental and finite-difference

results.

Pressure in lattice Boltzmann simulations of flow around a cylinder

Lukas Wagner
Department of Physics
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Since the discovery that lattice gases may be used to solve the Navier-Stokes equations' | related lattice
Boltzmann (LB) equations have been written?:3 which remedy many of their parent’s shortcomings. In
particular, the scheme of Chen et aB does not have an explicit velocity dependence of the pressure which
the original lattice gas did. Moreover, the pressure is readily found with the noise-free LB schemes, while
extracting pressure from noisy Boolean lattice gas simulations is a daunting prospect. While the theoretical
validity of using LB equations to obtain numerical solutions to the Navier-Stokes equations has been verified
by a number of studies, pressure in bluff-body flow has not been investigated yet.

It is useful to review briefly the derivation of the coarse-grained equations of motion, and thus of the

pressure for LB methods. One begins the multiscale expansion of the site populations for the triangular

lattice, f;, about their equilibrium values, f2, by writing the equilibrium values:

D D(D +2
f:o = (P - dr)/b + ZEciaua + “(—%Fleciaciﬁuauﬂ + 7"2 (1)
for the moving particles and
f? =dr+7ru2 (2

for the rest particles, with ¢; the vector pointing in the ith lattice direction of modulus ¢, b the number of
nonzero lattice vectors, p = % f;, u = Z¢; fi, D the spatial dimension of the lattice, d, a constant, and 7
and v, related by by + v, = —2pc~2. In reference [3], it was shown that by including the terms proportional
to u? in (1) and (2), it is possible to eliminate a velocity dependence in the pressure which is present in a
LB implementation of the original Frisch-Hasslacher-Pomeau lattice gas.

Upon performing the multiscale expansion 8; — €0;1+€28;2 ..., V — €V 1+. .. the equation for momentum
transport to O(e) is

0:Tciaf? + 0sZciacis f0 =0 (3)
a!(Pua) + aanaﬂ =0 (4)

where the leading approximation to the momentum flux density tensor is 45 = %60@ (p—d;) + puqug =

Y ficiacig, where the pressure (the isotropic part of II,5) given by

p=(p—do)?/D. 6)




Including terms of O(¢?) changes I4s only by the addition of viscous terms, so (5) is unchanged. An alter-
native way to write (5) is the following: writing the momentum flux density with f; (the actual populations

of the lattice sites) instead of f?, o5 = c*Eciacip fi, gives for the pressure
p=(p— fr — pu®)c*/D, (6)

which is equivalent to (5) when f, = f°. When f, differs from f? (in time-dependent flows), the difference
between (5) and (6) is still negligible— in the simulations presented here, on the order of 10~* in units of
dimensionless pressure p', p’ = (p — Poo)/ 39U *.

To quantitatively test (6), we set a circular obstacle into a steady flow and examine the pressure. The
boundary condition of steady flow far from the obstacle is approximated as follows: particles are injected
with a distribution of uniform flow at the two boundaries of the system in the streamwise direction. In the
direction perpendicular to the mean flow direction, periodic boundary conditions are used. A flow domain
large enough for drag results accurate to 5% is used?. Since the drag is intimately related to the pressure
near the cylinder, we estimate the error in pressure results due to finite size effects to be at most 5% also.

Figure 1 shows p’ vs angle 8 (§ = 0 at the stagnation point) for a range of Re, at a distance of 4 lattice
sites from the surface of the obstacle. The angle of minimum pressure as a function of Re appears identical
with the finite-difference results for steady flow of Denniss, and consistent with Norberg’s experiment6, from
which the result at Re = 130 is also shown . The maximum (minimum) values of the pressure shown in fig.
1 are consistently low (high) by as much as 15% in comparison with either experiment or finite difference
methods, however. It is easy to see why this is so.

Namely, finding p at the surface of the obstacle in the LB method presents a difficulty not present with
finite difference methods. A perfectly circular obstacle cannot be created on a regular lattice with no-slip
boundary conditions. The edges of an approximation to a circle on a lattice have jagged edges, whose effect
is discernible in the flow very near the obstacle. Evaluating the pressure at the surface of the obstacle does
not yield a smooth p(f); it is necessary to evaluate the pressure several sites (roughly a mean free path)
away from the surface of the obstacle to obtain a curve that does not show discontinuities due to the lattice.

Doing so introduces appreciable error both at the leading edge of the obstacle, and at the angle of minimum




pressure. Figure 2 compares the smooth curve at 4 lattice sites from the surface with the discontinuous curve
at 1 lattice site from the surface. The difference between the two curves is most pronounced at the pressure
extrema.

Figure 3 shows pressure at the stagnation point for the present LB simulations evaluated 1 site from
the obstacle and for the finite difference simulations of Dennis®. Agreement is good, though the stagnation
pressures from LB solutions are consistently smaller (by at most 6%) than Dennis’ results.

Figures 4 and 5 show the pressure field away from the immediate neighborhood of the obstacle at Re = 25
and 75 respectively. Note the steep pressure gradient near the stagnation point and near the points of
minimum pressure. The coarseness in the shape of the obstacle due to the lattice is visible in these figures.
The low-pressure region behind the obstacle in figure 5 is a vortex that has just been shed. The Strouhal
number for the vortex street shown in figure § is St = D/rU = 0.162, as compared to St = 0.153 for the
experimental result’, an error of 6%. This figure may be compared with the errors for St of < 3.5% in the
exacting numerical study of Abarbanel et a8,

While a detailed comparison of algorithmic efficiency with finite-difference and spectral methods was not
undertaken, it is clear that LB methods share with finite difference and spectral methods the drawback of
numerical instabilities for high Re imposed on insufficiently large computational domains?. On the other
hand, work on grids with varying spatial resolution in LB methodsm, while very promising, is still in its
preliminary stages.

I thank F. Hayot and Y. Pomeau for helpful discusions. This work was supported by the Department of
the Navy, Office of Naval Research, under Grant No. N00014-92-J-1271, and benefitted from computer time

at the Ohio Supercomputer Center.
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Figure Captions

Figure 1. Solid curves are dimensionless pressure, p’ = (p — peo)/2pU? evaluated at a shell four sites
from the obstacle’s surface plotted versus angle for Reynolds numbers 6.4, 12.8, 25.6,51.2, 76.8 from bottom
to top. Dashed curve is Norberg’s experimental result at Re = 130. Each successive curve is offset by 0.5
for clarity. The pressure minima are marked with triangles.

Figure 2: Dimensionless pressure p’ versus angle evaluated as in fig. 1 (line) and also on a shell one site
from the surface of the obstacle at Re = 25 (points).

Figure 3. Dimensionless pressure at the stagnation point from Dennis and Chang[5] (open circles) and
the present study (full circles).

Figure 4. Contour plot of dimensionless pressure at Re = 25. Dotted line is p = pinr, with each contour

corresponding to a step of 0.1p’.

Figure 5. Contour plot of dimensionless pressure at Re = 75, contour lines defined as for fig. 3.
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Lattice Boltzmann simulations of laminar and turbulent flow past a cylindrical

obstacle

Lukas Wagner and Fernand Hayot
Department of Physics
Ohio State University
Columbus, OH 43210

Abstract

We present lattice Boltzmann simulations of flow past a cylindrical obstacle. We are
interested in the effect of turbulence in the incident flow on the coherence of the von Karman
street.

Our study is based on the Lévy walk model of turbulence in a lattice Boltzmann model.
We discuss pressure around the cylinder in the laminar and turbulent regimes, as well as

the dependence of the von Karman street on the analogue of integral scale in our model.




The lattice-Boltzmann (LB) scheme of Chen et al [1] is an efficient way of obtaining
numerical solutions to the Navier Stokes equations. We use this LB scheme to investigate
laminar flow around a cylinder, and also to model the effect of turbulence in the incident
flow, with particular attention on the pressure, drag, and coherence of the von Karman
street. As a model for incident turbulence, especially the enhanced transport of momentum
into and out of the wake, we use an exchange model well suited to implementation in an LB
scheme.

We mimic momentum transport by an eddy of size £ by exchanging the populations of
two randomly chosen sites separated by ¢, with £ chosen with a probability p(£) o £~13 for
all results presented here. In agreement with the discussion of Schlesinger al [2], we associate
a waiting time with each length £. Since the waiting time is the reciprocal of the frequency
of jumps of a particular length, the distribution of waiting times is set by the dependence
of the number of exchanges, N(¢), on £. We use here N(¢) « Ny — 2.

We implement this model in 2-dimensional flow past a circular obstacle. The obstacle
is set into a channel with uniform velocity U at the boundaries in the streamwise direction
z, and periodic boundaries in the transverese y direction. A more precise description of the
flow geometry may be found elsewhere [3,4]. This is an extension of our previous study of
a Lévy walk based model of turbulence in a boolean implementation of channel flow [5]. In
addition to being able to resolve more precisely the velocity field, we are able to investigate
the pressure in this LB implementation.

There are two basic length scales when the LB model with exchanges is used to model
cylinder flow with incident turbulence. One is ¢,,,,, the maximum allowed exchange length,
which sets a length scale for the turbulent exchanges. €., in our model plays the role of the
integral scale in experimental studies. The second length scale in flow past an obstacle is just
the obstacle diameter, D; the ratio of these two length scales is clearly a useful parameter
in characterizing the flow.

One difficulty in finding pressure at a surface in the LB method not present with finite

difference methods is that a perfectly circular obstacle cannot be created on a regular lattice

2



with no-slip boundary conditions. The edges of an approximation to a circle on a lattice
are jagged, which produces discernible effects in the flow very near the obstacle. Evaluating
the pressure at the surface of the obstacle does not yield a smooth p(#); it is necessary to
evaluate the pressure several sites (roughly a mean free path) away from the surface of the
obstacle to obtain a curve that does not show discontinuities due to the lattice. Doing so
introduces appreciable error both at the leading edge of the obstacle, and at the angle of
minimum pressure. Results presented in figs. 1 and 9 are thus for pressure evaluated 4
lattice sites away from the surface of the obstacle.

The pressure in laminar flow as calculated in the LB scheme without exchanges agrees
with experiment [6] and finite difference studies(7,8]. Figure 1 depicts the pressure near the
obstacle surface as a function of angle at various Re.

Figures 2 and 3 show the pressure field without and with exchanges respectively at a
mean-flow Re of 76.8. The symmetric pressure field shown in fig. 3 suggests that in this
case, the von Karman street is destroyed by incident turbulence. This is easily verified by
inspecting the dependence of v(3.5D,0), the component of the velocity perpendicular to the
mean flow at a position 3.5 diameters downstream of the obstacle’s center, on £yq;, which
is shown in fig. 4. The inset shows how the time series of v(3.5D,0) changes character with
increasing exchange length; the intermittent intervals of regular oscillation in the velocity
become rarer with increasing exchange length.

An examination of u, the streamwise velocity suggests a simple explanation for why the
exchanges suppress the von Karman street. Figures 5 and 6 show contours of constant u
with no exchanges and with £,,, = 7D, respectively. The wake behind the obstacle is
much shorter with incident turbulence than without. Both the shortened wake and the
absence of vortex shedding are explained by the effect of the enhanced momentum transport
provided by the Lévy distributed exchanges. The exchanges (and the eddies which they
model) transport momentum between the slowly moving fluid behind the obstacle and the
fast moving fluid to either side. The net effect is to accelerate the fluid behind the obstacle,

thus shortening the wake. The same mechanism of enhanced momentum transport affects
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the region immediately behind the obstacle, where vortices form before they are shed in
the absence of turbulence. Sufficiently many exchanges between a nascent vortex and any
other region in the flow suppress the formation of the vortex, and thus there can be no
vortex street. Bearman, in his experimental study on the effects of incident turbulence on
flow around flat plates at much higher mean-flow Re [9], also states that the main effect of
turbulence in the incident flow is to the exchange of momentum between flow inside and
outside of the wake.

The simple picture that if £,,,,/D is sufficiently large, the von Karman street will be
destroyed, is complicated but essentially unaltered by spectral analysis and an investigation
of spatial correlation in the flow. Figure 7 shows that the power spectrum of the veloc-
ity behind the obstacle v(w)v*(w) retains a peak near the Strouhal frequency even with
lmaz = 1D, though the velocity oscillations are so small that they do not seem to be due
to translating vortices. The shedding of a vortex produces strong spatial correlations in
the flow. In particular, the quantity ¢(z) = (Av(z,0)Av(z, D/2)) varies very slowly with x
in laminar flow, as may be seen in fig 8. For ¢,,,, > 3D, however, the correlation falls of
sharply with increasing distance from the obstacle. If the correlation in velocities arose as a
consequence of spatially coherent vortices being convected upstream, the correlation should
change only as the vortices diffuse away. The transverse velocity does not show such a slowly
changing correlation with long exchanges— it is larger in magnitude near the obstacle and
shows stronger spatial correlation there also. Such behavior might be due to oscillation
of the vestigial wake. An experimental study [10] performed in turbulent shear flow past
a cylinder, at lower mean flow Re than Bearman’s investigation, supports the qualitative
conclusion that turbulence with a large integral scale disrupts vortex shedding,.

The effect of the momentum exchanges on the velocity field provides a ready interpre-
tation for the changes in the pressure near the obstacle, pictured in figure 9. The pressure
behind the obstacle is smaller with turbulence than without, and the pressure in front is
larger. The smaller pressure behind the obstacle is a consequence of the weaker backflow

in the wake, that is, of the enhanced momentum exchange between the wake and its sur-
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roundings. Similarly, exchanges tend to reduce v upstream from the obstacle, thus raising
the pressure there. We have checked that the pressure with exchanges shown in fig. 9 is
insensitive to the form of N(¥)

The drag, shown in fig. 10 as a function of 4,4,/ D reflects these changes in the pressure.
For small ¢, the drag reflects the suppression of the vortex street and the enhanced transport
of momentum by the Lévy distributed exchanges. Once £p,,/D becomes large enough,
increasing the size of the largest exchanges is no longer significant, so the change in drag
only reflects the slow increase in the probability of long exchanges with further increases
in £.... Exactly how large depends on the choice of N(£). Our results for how turbulence
in the incident flow affects pressure and drag are in qualitative agreement with Bearman’s
results for flat plates [9].

To conclude, we have implemented a Lévy walk-based model for incident turbulence in
channel flow and verified that vortex shedding is suppressed by incident turbulence of large
enough length scale. We have also qualitatively reproduced experimental results on the
effect of incident turbulence on drag and the suppression of vortex shedding at low Re by
turbulence with a length scale large compared to cylinder diameter.

This work was supported by the Department of the Navy, Office of Naval Research, under
Grant No. N00014-92-J-1271, and benefitted from computer time at the Ohio Supercom-

puter Center.
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Figure Captions

Figure 1. Solid curves are dimensionless pressure, p' = (p — pw)/3pU? evaluated at a
shell four sites from the obstacle’s surface plotted versus angle for Reynolds numbers 6.4,
12.8, 25.6,51.2, 76.8 from bottom to top. Dashed curve is Norberg’s experimental result [6]
at Re = 130. Each successive curve is offset by 0.5 for clarity. The pressure minima are

marked with triangles.

Figure 2. Contour plot of dimensionless pressure at Re = 75. Dotted line is p = pins,
with each contour representing a step of 0.1p'.

Figure 3. Contour plot of dimensionless pressure at Re = 75 with Lévy model of incident

turbulence; #pr = 7D, contour lines defined as for fig. 2.

Figure 4. Peak transverse velocity measured at a station 3.5 diameters downstream from
the obstacle center, v(3.5D, 0). plotted against maximum exchange length. Inset shows time
series of v(3.5D,0) for £,,; = 2D (dots) and 3D (line) showing the intermittency of the
periodic oscillations.

Figure 5. Contour plot of u/U, the nondimensional streamwise velocity component for
laminar flow at Re = 76.8. The dotted contour is u = 0, and shows the extent of the wake.
Each contour line corresponds to a step of u = U/6

Figure 6. Contour plot of u/U, the nondimensional streamwise velocity component for
laminar flow at mean-flow Re = 76.8. with £,,,. = 7D. Contours defined as in fig. 5. Note

the shortened wake and the slower flow around the obstacle.




Figure 7. Power spectra of v(3.5D,0) for £naz = 2D (solid line), 3D (dashed line),
5D (dash-dotted line), and 7D (dotted line). All curves have been rescaled to have similar
maxima.

Figure 8. Correlations in v at two positions downstream from the obstacle. The change
in c indicates that the peak near the Strouhal frequency is not due to vortex shedding.

Figure 9. Pressure as a function of angle in laminar flow (solid line) and with incident
turbulence with £,,,; = 7D, dash-dotted line.

Figure 10. Drag plotted as a function of £z /D. The insets show time series of the drag
in laminar flow at Re = 76.8 and for flow with incident turbulence with £,,,; = D. Even
the weakest turbulence, which still leaves the von Karman street intact, is strong enough to

mask the small-amplitude oscillations the drag undergoes as vortices are shed.
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Lévy walks and lattice gas hydrodynamics

F. Hayot and L. Wagner

Department of Physics, The Ohio State University, Columbus, Ohio 43210

Abstract. We describe an algorithmic implementation of Lévy walks in lattice
gas hydrodynamics, which we use to discuss the effects of turbulence in flow
around an infinite cylinder. We describe our results on pressure around the
cylinder, drag, and coherence of the Von Karman vortex street.

Keywords. Lévy walk, lattice gas hydrodynamics, turbulence, flow around a

cylinder.

1. Introduction.

We wish to discuss an implementation of the main features of Lévy walks in
lattice gas hydrodynamics!. The main features are those highlighted in the
paper by Shlesinger,West and Klafter? in a description of enhanced turbulent
diffusion ( Richardson’s law3®). The situation we will study is turbulent channel
flow, in particular the case where turbulent flow is incident on an infinite cylin-
der. We thus limit ourselves to two dimensional situations. Before describing
the implementation, we need to briefly recall the main features of lattice gas
hydrodynamics.

Lattice gas hydrodynamics is a fluid mechanical description at the micro-
scopic or kinetic level. There are two different versions, a Boolean one and one
which takes the form of a Boltzmann equation. The first deals with integer
numbers, and averaging over lattice regions is required in order to describe real
number fields such as fluid velocity. The implementation is purely algorithmic.
How and why, after coarse graining, macroscopic fluid behavior emerges, has
been amply shown*( in the low Mach number limit). The second one operates
at a less deep microscopic level, deals with real numbers, and amounts to solving
a Boltzmann equation numerically. Since in this case no coarse graining takes
place, there is no intrinsic statistical noise, which is a great advantage when one
aims at obtaining quantitative results.

2. Lattice gas hydrodynamics.

Let us now describe the Boolean version of lattice gas hydrodynamics, though
the results described later will make use of a Boltzmann equation. The reason
for doing so is that the introduction of Lévy walks is somewhat easier to describe
in the Boolean case. The lattice gas is a collection of point particles, which move
about from site to site on a two dimensional hexagonal regular lattice. At each
site there are six possible directions for a particle to move into. In one unit of




time the particle moves a distance of one unit between sites. Thus, though the
direction of velocity can change, its magnitude is fixed at unity. Besides moving
in the direction indicated by their velocities, at each time step also particles,
at the same site, can undergo two-, three- or four- particle collisions, which
are momentum conserving, and conserve the number of particles!. (Energy
conservation is trivial in the simple models with moving particles we consider,
because it is equivalent to particle number conservation.) The algorithm is such
at at any given time step, at any given site, there can be only one or no particle
moving in a given direction. The configuration of particles can therefore be
represented by a set of binary numbers. This is the Boolean character, which
assures numerical stability, but requires coarse- graining for defining velocity
and density fields.

The simplest Boltzmann model is a discrete version of the so- called BGK
( Bhatnagar, Gross, Krook) model®, for which the evolution equation is the
following:

filx+ et +1) = fi(x,t) = (=1/7)(fi(x, 1) = f1(x,1)), (1)
Here i = 1,...,6 numbers the six directions on the hexagonal lattice, of unit
vectors denoted cj, and f; is the number density of particles in the ith direction.
The coefficient 7, which will be of order unity is the relaxation time to the local
distribution f?, which is chosen appropriately for our purposes, as a function of
the local macroscopic density and velocity. The model we are using contains also
rest particles which satisfy a separate equation with a separate local distribution
function. The details of the model can be found in reference 6, where it is
made clear which choices are made for the local functions and why these are
advantageous. The kinematic viscosity in the model is linearly related to 7.
We have used the model extensively to discuss drag and pressure distribution
for flow around a cylinder at Reynolds numbers of the order of 100, and found
quantitative agreement with experiment”.

3. Lévy walk implementation.
3.1. Description.

Let us now describe how the Lévy walk part is transplanted into the Boolean
algorithm of lattice gas hydrodynamics. The two principal features of the Lévy
walk we retain is that there is exchange of momentum over large distances (
the probability density distribution falls off algebraically at large distances ),
and that there is a characteristic time associated with each exchange with is
distance dependent. First recall that an update in lattice gas hydrodynamics
is a combination of both a translation of particles into the directions of their
velocity vectors followed by a momentum and energy conserving collision, if
allowed. In between two successive updates the Lévy walk part of the algorithm
proceeds as follows.

Imagine pressure driven channel flow. A distance [ is drawn from an algebraic
probability density distribution of the form

p(l) o< 177 (2)



The value of z is 1.35 for the results reported here, and is basically the only
parameter. If z gets too large, large distances contribute less, and therefore the
exchanges do not change the laminar flow.

Once [ is drawn, a point S is uniformly chosen through the channel, and the
particle configurations at two sites, at equal distances [ from S in, say, a direction
transverse to the flow are exchanged. This operation corresponds to momentum
exchange over a distance of 2/, such that overall momentum is conserved. For
a chosen I, the number of exchanges, or correspondingly the number of points
S chosen, is made to depend on the value of I. The algorithm is such that the
larger { is, the fewer exchanges over distance 2[ take place. For a given /, as many
different points S are drawn until the required number of exchanges has taken
place. ( If S is too close to the boundary for the exchange of chosen [ to take
place, a new S is drawn.) We typically use for the number of exchanges a linear
dependence on I, of the form N(I) = Ng—I. Since the Lévy walk implementation
takes place within one update time, the characteristic time associated with each
distance [ is inversely proportional to the number of corresponding exchanges.
In other words, as required, the characteristic time associated with long jumps
is longer than for small jumps.

For the BGK model ( equation (1)) the Lévy walk implementation is similar.
The system is updated at time intervals one unit apart according to equation
(1), and within each such time interval the Lévy walk algorithm is implemented,
namely choices of { ( and thus N({)), and of positions S are made.

3.2. Discussion.

The Lévy walk exchanges act to maintain the system in a stationary out of
equilibrium state. They achieve this because they take place on time scales
smaller than the relaxation time 7. Though the long range part of the exchanges
might be represented in, say equation (1), through the introduction of some
nonlocal long range force, there is also the characteristic , length dependent,
time associated with each exchange. The time over which quantities in equation
(1) evolve is of order unity, and the Navier- Stokes equations are obtained, at
long times and large scales, through a Chapman- Enskog expansion, for which
there is local momentum and particle number conservation. However, in the
algorithm, the exchanges take place on time scales smaller than the unit update
time. On these time scales there is only global momentum conservation, no
longer a local one. ( We have checked that the particle number i. e. mass
transport which our procedure entails has a negligible effect.) We do not know
how to formalize this.

4. Results and comparison with experiment

The experimental situation concerns flow impinging on an infinite cylinder, when
the flow is turbulent. Turbulent intensity is of the order of several percent, as
measured by the ratio of fluctuating to average velocities. The other quantity
characterizing the turbulence is the integral scale, and its ratio to cylinder diam-
eter. To model this situation, we implement the Lévy walk algorithm, described
above in the Boolean case, for the Boltzmann model given by equation (1). What
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Figure 1: Dimensionless pressure p = (P — P )/3pU? where po, and U are
pressure and velocity far from the obstacle, as a function of § — x/2, where 6
is the angle around the cylinder measured from the stagnation point. Laminar
flow corresponds to the solid line, turbulent flow, with l,4-/D = 7 to the dash-
dotted line . Reynolds number Re = 76.8.

replaces the integral scale is the maximum length l,,,5, over which exchanges can
take place. (These are truncated Lévy walks.) The comparison with experiment
is qualitative, because the experiments we are aware of are done at very high
Reynolds number, often approaching the region of the so- called drag crisis. Our
simulations are done at a Reynolds number of about 100. The quantities we will
be discussing are pressure around the cylinder and drag. The question is what
changes relative to the laminar case occur in these quantities, when turbulence is
present, as a function of the ratio of integral scale to cylinder diameter. We will
also consider the issue of coherence of the Von Karman street, when exchanges
take place over larger and larger distances, transporting momentum into and
out of the wake, and thus interfering with the coherent structure of the vortices.
Let us discuss these items in succession:

4.1. Pressure around the cylinder.

Since on the hexagonal lattice, the cross- section of the cylinder is a polygon,
and not a circle, the pressure around the cylinder is measured a few units away
from it, in order to minimize this effect. A comparison of laminar pressure and
turbulent pressure is shown in figure 1. for our model . The ordinate is the
reduced pressure p', and the abscissa is proportional to the angle # around the
cylinder measured from the stagnation point. Over part of the forward region
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Figure 2: Drag coefficient Cp as a function of l;maz/D. The inserts show the time
series of drag in laminar flow at Re=77, and for flow with incident turbulence
at ez = D. Whereas the laminar time series is very regular, the second insert
shows that even weak turbulence is strong enough to mask the small amplitude
oscillations the drag undergoes as vortices are shed.

the turbulent pressure is higher than the laminar one, but around the back region
the opposite is true, the greatest difference occuring close to , but above § = 7/2.
We also find ( as expected) that the difference between laminar and turbulent
pressure diminishes as the ”integral scale” parameter l;qz /D diminishes. These
results are in qualitative agreement with those of Bearman® for flat plates, who
observed that turbulence diminishes the base pressure (behind the plate), and
also that, as the size of the plate increases ( for a given integral scale) the
difference between turbulent and laminar base pressure diminishes.

4.2. Drag.

Drag on the cylinder is affected by transport of momentum into and out of the
wake, which is a result of the Lévy exhanges. These exchanges lead to a clear
decrease in the size of the region of negative streamwise velocity component right
behind the cylinder. From a particle point of view, this means that there are
fewer particles which impinge onto the cylinder hitting it from the back against
the principal thrust of the flow. As a result, the drag is expected to increase
as lpmaz/D increases sufficiently. This is what is observed in figure 2 which
shows the drag coefficient Cp as a function of lynaz/D. As sooon as lmez/D
exceeds a value of 2, the drag starts increasing. It saturates when the size of the
exchanges becomes large enough to be insensitive to the dimension of the vortex
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Figure 3: Transverse velocity ratio vpeqr/U on the cylinder axis as a function of
lmaz/D. The time series for v/U is shown in the insert for l;,,4, /D = 2(dots) and
Imaz/D = 3(full line). U is the average incoming velocity far from the cylinder.

street itself. According to a wake entrainment argument®, turbulent drag should
increase as (Imaz/D)? relative to the laminar case, until it saturates. Our result
on turbulent drag is in qualitative agreement with this.

4.3. Coherence of Von Karman street.

It is natural to ask to what extent entrainment into and out of the wake, caused
by the presence of turbulence in the incident flow, affects the coherence of the
Von Karman street. As a measure of that coherence, we choose the component v
of velocity perpendicular to the streamwise direction, on the axis of the cylinder.
In the laminar case, this is a strong component, which at the Reynolds number
we are considering varies periodically in time with a well defined frequency,
which determines the value of the Strouhal number. Our results illustrated in
figures 3. and 4. show two things: one that vyeqr,the maximum value of v,
decreases rapidly as the parameter l;,,,/D increases, and becomes very small
at lpgz /D = 3, the value where also the drag starts deviating significantly from
the laminar value ( cf. figure 2.). Secondly, that though the intensity diminishes
considerably, the frequency spectrum of v continues to be dominated by the
Strouhal frequency component ( because of lack of statistics our power spectrum
data are not of good quality.) There thus may be no significant broadening of
the Strouhal peak in the spectrum as the range of exchanges increases. We
have noticed however that a contour plot of pressure, which in the laminar case
shows clearly the presence of vortices, changes completely as l,,,-/D becomes
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Figure 4: Power spectrum of v at a distance of 3.5D behind the cylinder on the
cylinder axis for l,q; = 2D (solid line), = 5D ( dashed line), and = 7D ( dotted
line), as a function of the dimensionless quantity ( the Strouhal number) wD/U.
All curves have been rescaled by their maximum value.

large enough, without any trace left of vortex structure. Correlations between
transverse velocity components on and off the axis show the same phenomenon®.
Speaking loosely, one might say that as the range of exchanges increases the Von
Karman street gradually loses its spatial coherence, but in such a way that the
rate of production of vortices ( the Strouhal number) remains well defined, at
least up to lyaz/D = 2. For clearly higher values the vortices cease to exist.

There is a caveat here: these results depend sensitively on the precise rela-
tionship between N(I) and I, whereas those on pressure for instance do not. It
is therefore worth repeating here that as far as the coherence of the Von Kar-
man street is concerned, our model studies only indicate what could happen
and what are the parameters to measure. As to experiment, we do not know
of a systematic investigation of the robustness of the Von Karman street with
the integral scale of turbulence. There are indications that its robustness is not
affected by turbulence!?, though an experiment on turbulent shear flow past a
cylinder seems to show that vortex shedding can be disrupted at large integral
scales of turbulence!!.
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